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 Introduction to high-order methods

 High-order shock-fitting method

 Application of the shock-fitting method to transition control
using surface roughness

 More potential applications

 Summary



What is a high-order numerical method?
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 A numerical method is said to be k-th order if the solution
error e is proportional to the mesh size h to the power of k

 A unanimous definition of high-order: third order or higher

k

n ne Y y h  

High-order methods

Third order or higher

* Z. J. Wang et al., High-Order CFD Methods: Current Status and

Perspective, Int. J. Numer. Meth. Fluids, 2012.

n n

dy
f (x, y),Y f (nh,Y )

dx
 

First-order method Spectral method



Why they are currently rarely used?
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 More complicated than low-order methods

 Less robust and slower to converge to steady state due to the
reduced numerical dissipation

 A high memory requirement for implicit time stepping

 Robust high-order mesh generators not readily available

 Research investment by the CFD community from the 70s
and the 90s made second-order methods efficient and robust



Why they are important?
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 High-order methods are needed to accurately resolve vortex
dominated flows, aeroacoustics, LES, DNS, boundary-layer
stability and transition, etc

 High-order methods have the potential in delivering numerical
solutions of higher accuracy

 High-order methods are not necessarily expensive



Methods for flows with strong shock
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High-order shock-fitting methods for hypersonic flow

 Shock capturing schemes have inherent problems with strong shock such as

shock-turbulence problems and hypersonic boundary-layer stability since

– DNS of turbulent flows require non-dissipative schemes which will give

spurious oscillations around shocks.

– Traditional shock-capturing schemes are dissipative around shock which

are not suitable for simulations of turbulent flow.

– Extreme grid stretching is needed near the strong shock

 Relevance of Shock-fitting schemes:

- Shock is treated sharply by shock-fitting schemes hence no grid

stretching is required.

- Shock-fitting is valid when shock thickness is much smaller than the

smallest length associated with turbulence which is proved to be true for

Mach 3 and stronger shocks.



Governing equations for hypersonic flow 
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 Two temperature model

• Translation temperature (T) : Translation energy and rotation energy

• Vibration and electron temperature (Tv): Vibration energy and electron energy

• Three modules: perfect gas, 5-species air, and 11-species air
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Shock-fitting: perfect gas flow

TFAWS 2017 – August 21-25, 2017 8

X

Y

Shock




H(,,)

 
    0

N N

N s 0

U1 U
I I I

I U -U

t
n n

s

u v c b
J J



    

          
                

            

0
s 0 N

Fa
F - F a

( , , , )H    

max( , , , ) constantx y z t   n   tv



 



To Find:

Time derivative

of Rankine-

Hugoniot

Relations

Compatibility

Equation

0
0( , , , . , , , , )sH

f H H

H
H






 
  



     
    

     






s N

U U
U I U

( , , , )H    

+

 0 0[ ] . ( ). 0

ˆˆ ˆ

[ ] / 0

t
s s

yx x

U U
J

i j k
J J J



 



    

  

  

'

'

F F F a

a

F

  '. ,N n n N ss
u v c

J


     ' '

s sI B I B F U



High-order schemes for flow after shock
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 Spatial discretization

 Temporal integration

Upwinding

scheme

Central

scheme

Fourier collocation method for spanwise flux derivatives
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Order of accuracy evaluation I
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(shock-entropy wave interaction – similar to Shu-Osher problem)

 This problem is suitable for convergence 

study as there is not a sudden jump in 

density and upto 3rd order spatial 

derivatives of density profile are smooth. 
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Order of accuracy evaluation II
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(shock-entropy wave interaction – similar to Shu-Osher problem)
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Error I: Error II: Error III:
Order from

I and II

Order from

II and III

Density 1.02E-05 4.39E-07 1.63E-08 4.5412991 4.747224

Velocity 7.77E-07 2.43E-08 7.89E-10 4.99887 4.94489

Pressure 5.87E-06 1.89E-07 6.06E-09 4.958014 4.961402

Order

L-1 errors

* Pradeep, S. R., Simulations of Turbulent Flow Interactions with Strong Shocks Using Shock-

Fitting Methods, Dissertation of University of California, Los Angeles, 2010.



Order of accuracy evaluation III
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(shock and vorticity-entropy wave interaction)

To Solve this problem with conventional shock-fitting:

 Shock is treated as boundary of the domain 

 Fluctuations are superimposed just upstream of the shock .

 Periodic conditions are used in the direction parallel to the steady shock.

 Non reflecting boundary conditions are used at subsonic exit. 
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Order of accuracy evaluation IV
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(shock and vorticity-entropy wave interaction)

Comparisons of various schemes for incident wave coming in at 75 degree 

angle of incidence: shock-fitting algorithm works much better
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* Pradeep, S. R., Simulations of Turbulent Flow Interactions with Strong Shocks Using Shock-

Fitting Methods, Dissertation of University of California, Los Angeles, 2010.



Shock-fitting: non-equilibrium flow
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 Shock-fitting algorithm

• Species concentrations keep constant across the shock

• Shock jump conditions

• One compatibility relation from behind the shock, corresponding to
the eigenvalue (U+a)
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Test 1: Air flow over a 1 meter cylinder
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 Solution of Gnoffo is obtained using LAURA code, where vibration and electron energy is 
obtained from curve fits.

 The grid used in our simulation is exactly the same as that used by Gnoffo.

 Shock-fitting result has a good agreement with Gnoffo’s, except near the shock.  

(Shock-fitting solver vs LAURA)



Test 1: Air flow over a 1 meter cylinder
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(Shock-fitting solver vs LAURA)



Test 2: A Mach 11.18 flow over a sphere
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Pressure                                     Mass fraction of N

Case
No.

Code M∞ U∞

m/s
T∞

K
P∞

pa
h0

MJ/kg
Tw

K
Re∞

(×106) 1/m
Radius

mm
Medium

1 SHKFIT 11.18 3844 293 1200 7.68* 1000 2.83* 7
7 o cone

Air/N2

(Shock-fitting solver vs US3D)



Chart of previous research topics
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Computational Fluid Dynamics

Development of high-order

numerical methods

Hypersonic boundary-layer

stability and transition path

DNS of strong shock and

turbulence interaction

Effects of thermochemical non-

equilibrium on high temperature 

flows behind strong shocks

• Two-temperature model

• State-by-state kinetic model

Transition control

• Surface

porous coating

• Discrete

and/or

continuous

surface

roughness

(patented)

Collaboration on

theoretical

analysis



Stability of Mach 8 flow to blow suction
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 Flow conditions

 Blowing-suction models
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Features of hypersonic boundary layer
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Perturbations at fixed frequency I
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f7 = 104.44 kHz, Ssyn = 0.3467mf6 = 89.52 kHz, Ssyn = 0.4719m



Perturbations at fixed frequency II
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f9 = 134.28 kHz, Ssyn = 0.2097mf8 = 119.36 kHz, Ssyn = 0.2654m



Hint from the results
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 The synchronization point plays an

important role in the excitation of mode

S by the blowing-suction actuator.

 The relationship between the location

of blowing-suction actuator and the

synchronization point indicates: in

order to control or delay the laminar-

turbulent transition with wall blowing-

suction, the blowing-suction actuator

should be located upstream of the

synchronization point.
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Flow stabilization using roughness
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 Flow conditions

5.92M  48.69KT 

742.76Pap  Pr 0.72

6Re 13 10 m  

ˆ( )

ˆ( )

ˆ ( ) sin( )

ˆ ( )

ˆ( )

u yu

v yv

w y tw

p yp

T T y

 

  
  
     

   
   
   
      

 RHS disturbance vector represents the

eigenfunction of a specific boundary-

layer wave (100kHz).
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The growth of pressure perturbation
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 The roughness location (0.185 

m) corresponds to the 

synchronization point at 

133.26 KHz. 

 120 KHz perturbation is 

amplified by roughness (The 

roughness is before the 

synchronization point).

 Both 130 KHz and 140 KHz 

perturbations are damped by 

roughness (The roughness is 

after the synchronization 

point).



What about two roughness elements?
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 Roughness spacing is about 10 

roughness width. First roughness 

location: 133.26 KHz. Second 

roughness location: 119.26 Khz.

 120 KHz perturbation is amplified 

by the first roughness since it is 

locates upstream of its sync pt. 

However, it is damped by the 

second roughness since the second 

roughness is close to its sync pt. 

 Both roughness are located at or 

downstream of the sync point of 

130 KHz and 140 KHz 

perturbations. Therefore, the 

disturbances of these two 

frequencies are damped by both 

roughness.



Test of simulation and experiment
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Flow conditions UCLA designed roughness

Purdue 

model



Experiment of roughness effect
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Patent: Hypersonic laminar flow control
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* https://www.google.com/patents/US20150336659

 The control of laminar flow can be achieved by applying an array of surface 

roughness elements in the region before the laminar-turbulent transition.

 The roughness elements may have a height between 40% and 60% of the 

local boundary-layer thickness.

 The exact location, height, and spacing of surface roughness elements may 

be determined by a numerical simulation strategy based on the most 

unstable second mode, e.g. using known eN transition prediction method, 

experimental measurement, or any other suitable technique.



Simulations of thermal protect system
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 Some thermal protection systems (TPS) 

of hypersonic vehicles are ablative such 

as may be found on reentry vehicles

 Boundary layer transition strongly 

influences heat transfer to the vehicle so 

its prediction is critical when sizing TPS

 TPS is commonly overdesigned because 

boundary layer prediction is difficult 

which increases the vehicle weight

 There exists little numerical work on 

surface chemistry or ablation effects on 

hypersonic boundary layer transition

 Develop and verify a module of the high-order shock-fitting method with a 
surface chemistry model for thermal protection system

Copyright Space X



Numerical simulations of sonic boom
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Formation of sonic boom                                             Sonic boom in real life

M = 1.4

(1,100 mph)

 For supersonic flight, noise (acoustics) combines 

into shock wave, the classic “Boom! Boom!” 

signature

 Due to the annoying sonic boom, commercial 

supersonic flight over land are currently 

prohibited. 

 Numerical simulations are needed for the design 

of faster supersonic jet which may even include 

non-equilibrium effects. NASA & Lockheed Martin:  QueSST



DNS of shock and turbulence interaction
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 Interactions of turbulent flows and shock waves are important in many 
natural processes as well as scientific and engineering applications where 
very high rates of compression and expansion waves are generally observed

• Volcanic eruption

• Supernova explosion

• Detonation

• High-speed aerodynamics

• Shock wave lithotripsy to break up kidney stones

• Energy of inertial confinement fusion

Typical schematic of isotropic shock and 

turbulence interaction problem
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 One of the fundamental building blocks in these complex processes and 
applications is the canonical problem of interaction of isotropic turbulence 
and a normal shock

 The underlying physics in 
strong shock and turbulence 
interaction is essential for 
better understanding of such 
processes and applications.



Summary
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 Compared with low order CFD method, high-order methods are quite important due 

to its capability to achieve high-order accuracy 

 A high-order shock-fitting method has been developed and verified for numerical 

simulations of high-speed/non-equilibrium flows which includes different modules 

for different problems

 The application of the high-order shock-fitting method leads to the patent of 

hypersonic laminar flow control – delay laminar-turbulent transition by 

appropriately designed surface roughness

 The high-order shock-fitting method can be applied to internal flow simulations as 

well as external flow simulations, such as thermal protection system, low boom 

supersonic jet, flows around high-speed flight vehicles and through their propulsion 

systems, DNS of turbulent flow interacting with strong shocks, etc.


